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Naturalness of the Space of States in Quantum 
Mechanics 
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We show how certain constructions of quantum mechanics, like monopoles, 
instantons, and the Schr6dinger-von Neumann equation, are related to geometric 
functors which are representable. We study the differential geometry of the 
projective bundle associated with an infinite-dimensional separable Hilbert space, 
and we construct a universal connection which is described as a subspace of 
skew-Hermitian operators. This connection is responsible for the Berry phase. 

1. I N T R O D U C T I O N  

As is well known, quantum mechanics (Dirac, 1958; Bohm, 1993b) is 
an essentially complex theory based on the principle of  superposition of  
amplitudes, which are elements of  a Hilbert space that is usually separable 
and infinite dimensional, though many quantum systems of  physical interest, 
such as, for example, spin systems, involve finite-dimensional space. 

The discovery of geometric phases (Berry, 1994) reinforced the idea 
that quantum mechanics is a theory with deep geometric and topological 
roots; in particular, it was shown (Aharonov and Anandan, 1987; see also 
Simon, 1983) that the geometric phase in the finite-dimensional case is given 
by the holonomy of the Naras imhan-Ramanan connection. The extension to 
infinite dimensions was considered only at the formal level through the 
inductive limit of  finite-dimensional spaces. 

In the present paper, after discussing the origin and naturalness of  the 
geometrical structures involved in the description of  the quantum states, we 
present a rigorous treatment of  the geometry of the infinite-dimensional 
projective Hilbert bundle and its universal connection. 
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We use the term "naturalness" in a technical sense, that is, in the categori- 
cal framework. This is done in Section 2. The main idea is that starting from 
the empty set, the successive application of certain representable functors 
(Mac Lane and Birkoff, 1979) leads in a completely canonical way to the 
mathematical constructions used in quantum mechanics: complexification and 
quaternization of real vector spaces, Clifford algebras, principal G-bundles, 
connections and spaces of states (projective spaces). 

In Section 3 we review how the universal connection of Narasimhan 
and Ramanan (1961) is responsible for the time evolution of the Aharonov- 
Anandan (1987) wave function and therefore of geometric phases, through 
parallel transport along the solution of the Schr6dinger-von Neumann equa- 
tion in the finite-dimensional projective space. For simplicity we restrict 
ourselves to the nondegenerate case. 

In Section 4, which is the longest of this paper, we study the differential 
geometry of the projective Hilbert bundle associated with an infinite-dimen- 
sional separable Hilbert space ~ .  We define a differentiable structure on this 
bundle using homogeneous spaces of Banach Lie groups. This allows us to 
define a universal connection in terms of a certain subspace of skew-Hermitian 
operators on ~ .  We also show that this subspace carries a complex structure. 
Finally, in the Appendix we prove a key technical result needed to study 
homogeneous spaces. 

2. NATURALNESS 

2.1. Representation of Functors 

We assume here that the reader is familiar with the concepts of categories 
and functors (Mac Lane and Birkoff, 1979). 

Let qo: ~ --> Set  be a functor (cofunctor) with ~ an arbitrary category 
and Set  the category of sets. A universal object (Mac Lane and Birkoff, 1979) 
for q~ is a pair (Co, ao) where Co is an object in ~ and ao is an element of 
qo(Co) which solves the following problem: for any object C in �9 and any 
element a in q~(C) there exists and is unique an arrow oL: Co ---> C (a: C --> 
Co) with functorial image oL,(a*) such that a = a,(ao) [a = a*(ao)]. This 
definition is depicted in the following diagrams: 

q~: c~---> Set  

C > q~(C) ~ a 

T .T 
Co ) qD(Co) ~ ao 

Universal object 
for a functor 

C ) q~(C) ~ a 

ol To.T 
Co > q~(Co) ~ ao 

Universal object 
for a cofunctor 
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It can be easily proved that if a universal object exists, then, up to 
isomorphism, it is unique. In fact, let (Co, ao) and (C6, a6) be universal objects 
for tp (covariant). Then a6 induces a unique cto: Co ----) C~ such that a6 = 
(x0,(ao) and ao a unique [30:C6 ---) Co such that ao = 13o,(a6); then a6 = (Cto 
~ [3o),(a~) and ao = (13o o Cto),(a0), and by uniqueness Oto o [30 = idc6 and [30 
o OLO = idco, SO Oto = [3ff I is an isomorphism in ~ .  Notice that the isomorphism 
is itself canonical. For contravariant functors the proof is similar. 

If H(Co, C) denotes the morphisms from Co to C, then for each C in 
the assignment 

,~o,.o(C): ~(C) ~ H(Co, 63 

given by ~Co,ao(C)(a) = ct is a bijection of sets [for a confunctor, H(Co, C) 
is replaced by H(C, Co)], i.e., it is an isomorphism in Set. It is clear that Co 
is a distinguished object in %. 

The following examples are important for later applications. 

(i) Complexification. Given a real vector space V, one defines the functor 
q~v: ~ ---) Set through q~v(X) = LinR(V, X) (real-linear transformations 
from V to X) and ct,: LinR(V, X) ---) LinR(V, Y), et,(r) = a o r if ct �9 Linc(X, 
Y). A universal object is a complex vector space V c together with a real- 
linear transformation ~/: V --~ V ~ such that for any complex vector space X 
and any real-linear map f: V --) X there exists and is unique a complex-linear 
map ~ W --~ X such that the following diagram commutes: 

X 

V VC 

The correspondences with the general definition of a universal object are Co 
= V c, a0 = ~/, a = f,  and ot = f. The pair (V c, ~/) is the complexification of 
the real vector space V and is given by V r = V ~) V (=  V @2) with 

(v @ v') + (w @ w') = (v + w) @ (v' + w') 

(OL + i13)(V ~ V') = (aV -- [3V') ~ (OLV' + [3V) 

for a,  [3 �9 R and i �9 C, and ~/(v) = v (~ 0; for real-linear f, f (v  ~3 v') = 
f (v)  + if(v'). 

(ii) Quaternization. A (left) quaternization of a real vector space V is a 
left H-module vq together with a real-linear transformation K: V ~ vq such 
that for any left H-module Y and any real-linear map 32 V --~ Y there exists 
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and is unique a transformation of left H-modules f: V q ---) Y such that f o K 

= f. It is easy to verify that the pair (V q, g.) is a universal object for the 
functor Ov'-rt d/t ---) Set given by t~v(Y) = LinR(V, Y) and ~Jv((~): Lina(V, X) 
---) LinR(V, Y), Ov(O0(S) = et o s if oL EH H(X, Y); the functorial diagram is 
the following: 

Y ) LinR(V, Y) ~ f 

,T T 
vq > LinR(V, V q) ~ 14, 

The explicit formulas for the quaternization of V are V q = V ~34 with 
sum and multiplication by reals as in the complex case, left multiplication 
of vl (3 v2 �9 v3 (3 v4 by i, j ,  and k in H,  respectively, given by ( -v2)  (3 vl 
(~ (--V4) (~ V3, (--V3) (~ V 4 (3 V 1 (~ (--V2) , and ( -v4)  (3 ( -v3)  (3 v2 (3 vl, 
and K(v) = v (3 0 (3 0 (3 0; for real-linear f ,  

?(V 1 (~) V 2 (~ V 3 (~ 1'4) = f(Vl) Jr" if(v2) -1"- jf(v3) -I- kf(v4). 

(iia) Quaternization o f  a complex vector space. A complex vector space 
is quaternized along the same lines as a real vector space is complexified. 
Namely, let V be a complex vector space. A (left) quaternization of  V is a 
left H-module V q together with a complex-linear transformation p: V ---) V q 
such that for any left H-module W and any complex-linear map ~ V ---> W 
there exists and is unique a transformation of  left H-modules f: vq ---) W 
such that f o p = f. The pair (vq, p) defined by vq = V @2 with sum as in 
the complex case and left multiplication by H given by (zl + jz2)(vl �9 v2) 
= (ZlVl - z2v2) (3 (ZlV2 + z2vO, and p(v) = v �9 0, such that for any complex- 
l inearf ,  f (v  �9 v') = f ( v )  + j f ( v ' )  is a universal object for the functor ~Pv:ri 
d~t ---> Set with ~Ov(IO = Linc(V, I1) and ~pv(Ct) ------ or.: Linc(V, X) --~ Linc(V, 
y), qOv(OO(s) = a o s if ct EH H(X, Y). The  functorial diagram is 

W ) Linc(V, W) ~ f 

T 
V q ) Linc(V, vq) 3 p 

with f , (p )  = f o p. 
(iii) Clifford Algebra. A Clifford algebra (Lawson and Michelsohn, 1989) 

for a real or complex vector space Vwith an inner product g is a pair consisting 
of an associative algebra Clv, g with unit lc  and a linear transformation ~/: 
V-- )  Clv, g satisfying ~/(v)'y(w) + ~l(w)~l(v) = 2g(v, w ) l c ,  i.e., a Clifford map, 
such that for any associative algebra A with unit 1A and any Clifford map f: 
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V -4 A there exists a unique algebra homomorphism f: Clv.g ~ A such that 
]~ ~ ~l = f. (Clv, g, ~l) is a universal object for the functor 

q~v,g: {associative algebras with unit over the field k (k = R or C)} --+ Set 

given by q~v~(A) = {Clifford maps V -4 A} = {a: V -4 A linear, ot(v)tx(v') 
+ ot(v')ot(v) = g(v, v')la} on objects, and qOV.g(k: Al -4 A2) ~ k, :  {Clifford 
maps V -4 Al} -4 {Clifford maps V -4 A2}, h,(r)  = k o r on morphisms. 
This is illustrated in the following diagram, with f,(~/) = f o ~/: 

A ) Cliff(V, A) ~ f 

Clv, g ) Cliff(V, Clv, g) ~ 

The concept of universal object is closely related to that of representable 
functor, which we now explain. Let ~p and ~ be covariant functors from the 
category ~ to the category ~ .  A natural transformation between q~ and ~, 
~:  q~ -4 O, is a rule that to each object X in �9 assigns a morphism ~(X): 
q~(X) -4 ~(X) in ~ such that for any morphismj~ X -4 Y in ~ the following 
diagram conmutes: 

q~(x) > ~(Y) 

,~(x) 1 ~a,(r) 
r ~ r 

i.e., @(Y) o qXf) = r  o ~(X). (For contravariant functors q0 and r the 
horizontal arrows are inverted.) If for any object Z in ~ ,  ~(Z)  is an isomor- 
phism, then the natural transformation is called natural equivalence. (A 
well-known example of natural transformation is when q~ and ~ are the 
contravariant functors of p and p + 1 differential forms, ~P and ~e+l, 
respectively, from the category of differentiable manifolds to the category of 
real vector spaces; then @ = d is the De Rham exterior derivative.) It can 
be shown that if (Co, a0) is a universal object for the covariant functor q~: q~ 
-4 Set, then 

XI'tc0,a0: ~ -4  H( Co, - - )  

is a natural equivalence; ~Co,ao is called a representation of q~, and q~ is called 
representable. [For a cofunctor ~: c6 -4 Set, H(Co, - - )  is replaced by H(-- ,  
Co).] Notice the close analogy with the idea of representation of groups. Here 
H(Co, - - )  is the canonical functor �9 -4 Set given by H(Co, X)  on objects 
and k , :  H(Xo, Xl) -4 H(Xo, X2), h . ( f )  = k o f on morphisms. 
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For the examples (i), (ii), and (iii) above, the representations of the 
functors q~ t ~  and q~V,g are given by ~v~,~(X)(t) = f, ~Vc,,,(Y)(D = f, and 
~Clv..,, ~(A)0') = f, respectively. The inverse functions are xltv~.t(X)-l(h) = 
h o ~/'i ~vq,~(Y)-l(h) = h o K, and ~Clv,,, ~I(A)-~(h) = h o % with h,'respectively, 
in H(V ~, X), H(vq, Y), and H(CIv, g, A). 

2.2. Principal Bundles, Connections, and Parallel Transport 

Let G be a Lie group. A smooth principal G-bundle (Aguilar, 1996; 
Kobayashi and Nomizu, 1963) consists of two manifolds P and X together 
with a smooth function ~T: P ---> X (respectively the total space, the base 
space, and the projection), and a smooth action ~: P • G --> P, ~(p, g) = ~ ( p ) ,  
such that there exists a set of diffeomorphisms called local trivializations q~: 
U X G ---> ~- I (U)  obeying IT(~p(X, g)) = X and ~p(x, g) = ~(~(x, e), g) (e is 
the identity element and the set of all U's is an open cover of X). These data 
are collectively denoted by ~ = (P, ~r, X, G, ~) or more simply by ~ = P(X, 
G), and diagramatically represented by ~: G --> P -Y-> X. One can show that 
the action of G on P is free, transitive on Px -~ IT-I({X}) for each x E X and 
IT(pt) = ~r(p2) if and only if there exists g ~ G such that p2 = Pig. We call 
G the fiber of the bundle because at each x, Px is diffeomorphic to G. 

Principal G-bundles can also be defined over an arbitrary topological 
space X, just by asking the functions in the previous definition to be only 
continuous and G only a topological group. A principal G-bundle over X is 
numerable if there is a partition of unity subordinated to the open cover of 
X determined by the local trivializations. In particular, principal G-bundles 
over paracompact spaces (e.g., differentiable manifolds) are numerable. 

Let ~ = P(X, G) be a smooth G-bundle, p ~ P and x = ~r(p). Then the 
smooth one-to-one function ~p: G --> P, g ~. ~p(g) := ~b(p, g) induces a 
diffeomorphism between G and P~ = IT-I({X}), the fiber over x given by 
6Lp: G --4 Px, 6tp(g) := Otp(g). As a consequence for each g ~ G one has the 
exact sequence of real vector spaces (tangent spaces) 

0 ---) TgG (dap)~ TpgP (d~r)~ T~( --~ 0 (2.1) 

i.e., (dap)g and (d~r)pg are linear maps, (detp)g is one-to-one, (dTr)pg is onto, 
and ker(dar)pg = im(dap)g [where (dap)g and (d'rr)pg are the differentials of 
the functions ap and "tr at the points g and pg, respectively]. Then one has 
the isomorphisms of vector spaces Pl: TpgP/im((dap)g) --> TxX given by 
pt([Vpg]) = (d'rr)pg(Vpg) for any V'pg ~ [Vpg] = Vpg + (dotp)g(TgG), and P2: TgG 
�9 TxX ~ TpgP given by p2(vg ~3 Wx) = (dap)g(Vg) + ~l(wx), where ~/: T~X 

TpgP satisfies (d,rr)pg o ~ = idrxx and is the linear extension of the (noncanon- 
ical) map which associates a vector in TpgP to each basis vector of T~X. (The 
existence of the second isomorphism is known as the excision property of 



Space of States in Quantum Mechanics 889 

an exact sequence of vector spaces.) Since e is a canonical element of G, 
the pair (6, P) induces the exact sequence 

0 -+ q3 (d(,~); T ~  ~ T~X -+ 0 (2.2) 

where ~ -- TeG is the Lie algebra of G. 
A G-bundle morphism 6' = P'(X', G) --+ 6 = P(X, G) is a topological 

group homomorphism h: G --+ G together with continuous functions 3~ P' --+ 
P and f: X' + X such that ~ o ( f  • h) = f o t~' and 'rro f = f o -rr' (the bar 
in f indicates that f is determined by f) .  If X' = X, f = idx, and h = ida, 
then f is a homeomorphism and 6' + 6 is a G-bundle isomorphism. 

Let ~a(X) he the set of isomorphism classes of numerable principal G- 
bundles over X (an element of this set is denoted by [6], the equivalence 
class of 0 and ~ab(X) the set of isomorphism classes of smooth principal 
G-bundles over a manifold X. One can show that there is a bijection ~a~ --~ 
~aa (when G is a Lie group with at most countable many components). A 
theorem due to Milnor (1956) shows that for any topological group G (e.g., 
a Lie group) there exists a universal bundle 

6a: G---> PG ~ BG 

such that for any space X there is a bijection between ~G(X) and IX, BG], 
the set of homotopy classes of maps from X to BG. (G does not determine 
uniquely the universal bundle, but only its homotopy type.) So for any 
numerable G-bundle 6 over X there is a continuous function or: X ---> BG 
such that the pullback bundle tX*rG: G ---> ot*PG 2.> X is in the class of 6- 
The total space of Ot*rG is the subspace of X • PG given by the pairs (x, 
p) such that or(x) = "trG(p). If G is a compact Lie group, then 6a is filtered 
by smooth principal G-bundles 

6~G: G --~ PrG 2-5 B~G 

such that Ur~176 1 BrG = BG. 
It can be verified that for any topological group G the pair (BG, [rG]) 

is a universal object for the contravariant functor q)a: ~ ' o p  ---> Set defined 
by q0a(X) -- ~G(X) on objects, and q)a([f]: X -+ Y) = [f*]: ~G(Y) --+ ~a(X),  
[f]*([6]) = [f*6] on morphisms. The following diagram illustrates this fact: 

X > ~ c ( x )  ~ [~1 

:1 T:, T 
BG > ~G(BG) ~ [~G] 
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The representation of q~a is the natural equivalence ~sc,[~c]: q~G ~ H( - - ,  
BG) given by ~s6,te~l(X)([~]) = [f], such that f * ~  ~ 6. 

An Eilenberg-Mac Lane space is characterized by having its homotopy 
concentrated in one fixed dimension, i.e., if K(A; j )  is such a space, then 

A, i = j 
7rig(A; J) = O, i --/: j 

In these cases there is the bijection [X, K(A;j)] = Hi(X; A) where the right- 
hand side is the jth cohomology group of X with coefficients in the discrete 
Abelian group A. Then real and complex line bundles, i.e., vector bundles 
associated with principal S O- and S l-bundles, are classified by the Stiefel-  
Whitney class w~ and the Chem class c~, respectively; this is so because BS ~ 
----- RP ~ = K(Z2, 1) and BS 1 = CP ~ = K(Z, 2) and there exist bijections wl: 
~sO(X) --> HI(X; Z2) and cl: ~st(X) ---> Hz(X; Z). The second case is relevant 
for quantum mechanics (see Section 2.3). 

Let ~ = P(X, G) be a G-bundle, p in P, x = rr(p) in X its projection, 
and Px = w-~({x}) the fiber over x. The vertical space at p is the tangent 
space to Px at p: Vp = TpPx. A connection H in ~ is a smooth assignment 
of a vector space Hp at each p satisfying the following two conditions: (i) 
Hp is isomorphic to TxX through Tt.plHp (the restriction to Hp of the differential 
of xr at p) and (ii) H,g~p) = @g.p(Hp) for each p in P and g in G. As a 
consequence TpP, the tangent space to P at p, splits into the direct sum Hp 
~) Vp; lip is called the horizontal space at p. A connection is determined by 
a smooth 1-form to on P with values in ~J, by defining Hp :-- ker top. 

A universal connection on ~ is a family of  connections { to o } r~l, where 
each tot is a connection on ~ ,  such that if to is a connection on 6: G --> P 
-Y-> X, then, for some r, there exists a smooth map ~ X --> BrG such that to 
= f*(to~), where~ P ---> PrG satisfies 'IT r ~  ~ = f o  "rr. Narasimhan and Ramanan 
(1961) proved that if G is a compact Lie group, then universal connections 
exist. 

Given a smooth curve c in X through the point x, there is a unique curve 
c r in P through p in Px (the lifting of c by H through p) with horizon- 

T tal velocity vector d at each point. Thus for each path and connection there 
is a canonical diffeomorphism P~: Px --> Px' called parallel transport. (This 
fact is precisely the reason for the name "connection": the horizontal distribu- 
tion of  vector spaces allows us to identify arbitrary "distant" fibers in the 
total space along prescribed paths in the base space.) If c is a loop at x, then 
P~ is called the holonomy of H at x along c. 

Let G = G ~ C k(x) be a group of matrices (s = dimRG and k = R or 
C), to the 1-form of the connection H, c: [to, q] --~ X a loop at x, and 1~: [t 0, 
tl] --> P an arbitrary (auxiliary) lifting of c through q = [3(t0) e P~. Then 
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the (unique) curve g: [to, q] ---> G which gives the horizontal lifting of c 
through p ~ Px, i.e., which is such that c'~(t) = f3(t)g(t) with qg(to) = p = 
or(to) satisfies the differential equation (Isham, 1989) 

D 
g(t) = 0 (2.3) 

with the covariant derivative operator given by 

D d 
- + o~t)([3(t)) :  G s ---> k(s) (2 .4 )  

dt dt 

Thus g is covariantly constant. If the auxiliary curve [3 passes through p, i.e., 
if q = p, then g(to) = 1. The iterative solution to (2.3) is given by the "time- 
ordered" exponential 

g(t)g(to)-I = T exp - dt' ~(,,~(~(t')) 

-- 1 + ~ ( - 1 )  m d'q ~('rL)(~('rl) ) 
m=l 0 

I01 f'rm - 2 X dr 0~13(,2)(~(T2)) " ' "  dTm-I tOl3(rm_l) (~(Tm-l ) )  
Jt 0 

f 
'rm- ! 

• d'rm col~(,,,)([3('rm)) (2.5) 
JtO 

Formally this quantity is the limit of a time-ordered product of Lie group 
exponentials with "infinitesimal" arguments, i.e., infinitesimal vectors in the 
Lie algebra: 

lim l--[ exp[-~ 
e----~ tO<t'<_tl 

(factors are ordered from right to left with increasing time). We emphasize 
that (2.5) is a global formula. For each p ~ P the set of elements a ~ G 
such that cS"(tt) = C(to)a for c in the loop space O(X, x) of X at x = "rr(p) 
is a subgroup of G called the holonomy group of H at p. Given c and p, a 
is determined by pa = f3(tOg(tO. 

If c is contained in the open set U corresponding to the local trivialization 
(U, q~) of ~ and 13(t) = cr(c(t)), where cr is the local section cr(x) = q0(x, 1), 
then c~;(t) is given by the (local) formula 

c~ (t) = ff(c(t))[ T exp - f 'o dt' A(t') " ic(t') ]g(to) 
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where the "gauge potential" A = ~=1 Ai dxi is the pullback of to by or, i.e., 
A = r and x', i = 1 . . . . .  n = dimRX are local coordinates on U. 

2.3. Projective Spaces 

In the framework of category theory the trivial vector space R ~ can be 
obtained from the empty set ~b as the identity morphism id,; since the only 
metric on R ~ is g = 0, the application of the Clifford functor gives the real 
numbers C1R0,0 ~ R. The complex numbers and the quatemions are respec- 
tively obtained through the complexification and quaternization of R, which 
are also functorial, as shown in Section 2.1. The unitary elements R~, C~, 
and H1 are, respectively, the 0-, 1-, and 3-spheres (the only spheres which 
are groups): 

R D R 1 = {1, - 1 }  = S O = O(1) ~ Z2 

C D C 1  = {zl Izl = 1} = S 1 = U ( 1 ) ~ S O ( 2 )  

H D HI  = {ql Iql = 1} = S 3 = Sp(1) _-_---_ SU(2) 

The universal objects (G-principal bundles) naturally associated with 
these groups are the infinite spheres over the real, complex, and quaternionic 
projective spaces, respectively, 

"tr R 

~ :  S~ S~---> R ~  

xt C 

~ :  S 1 ___> S ~ ~ CP ~ 

"~H 
~ :  S3---> S~ ~ H P  ~ 

where for the real case 

S ~ : U S i - I  C U R i : R ~176 S i-1 C R i, 
i=1 i=1 

for the complex case 

S ~176 = U S 2i-1 C U C i = C ~176 S 2i-1 C C i, 
i=1 i=1 

and for the quaternionic case 

m o o  

S ~176 = U S 4i-1 C U H i : H ~, S 4 i - I  C H i, 
i= 1 i= 1 

Rp~ = 0 Rp, " 
i=0 

o 0  

c e  ~176 = U C P  i 
i=0 

o o  

H p ~ =  t J H p  i 
i=0 

Notice that we are identifying/( '  as a subspace of/('+~ for k = R, C, and H,  
and also for spheres and projective spaces. In all cases the infinite spaces 
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{pt.} 

and 

S 3 S 3 

I 1 
S 3 m3 ) S 7 

I 1 
{pt.} no > Hp1 

are given the inductive (also called finite) topology; then the vector spaces 
K = (K = R, C, and H),  which have the standard strictly positive inner 
products, are not Hilbert spaces since they are not complete; moreover, they 
are not even pre-Hilbert spaces, since the inductive topology is not metrizable 
(Willard, 1970). 

There are infinite sequences of  nontrivial (except for the first bundle in 
each sequence) bundles (Hopf bundles) and bundle morphisms (inclusions) 
which for the real, complex, and quaternionic cases are shown in the follow- 
ing diagrams: 

S O S O S O S O S O S O 

I I I I I I 
s o  io ) s l  it > $2 iz ) $3 ) . . .  ~ S i -  1 ti-i) . . .  _..~ S ~ 

1111 I I 
{pt.} A > pj~l J, > pj~2 J2 > i~3 J3 > ... _.~pj~i-i JH> ... _+pj~ 

S I S l S l S 1 S l S t 

1111 I I 
S1 k, ) $3 k3 > $5 k5 > 87 k7 ) ...._..> s2 i -  1 k21-~ o. .  _..~SOO 

I I I I I I 
lo ) C p  I 11 > C p  2 12 > C p 3  13 ) . . .  __>cpi-I  / i- t)  . . .  ___> C p ~  

S 3 S 3 S 3 S 3 

I I I I 
m7) S l  1 roll> S15 mls) . . .  _..> S4i-  1 m4i-~ .......~SOO 

I I I I 
nl > H p 2  n2 > ~_Ip3 n3 > . . .  _ . . > H p i -  I nl-i> . . .  - - - ~ I - - ~  

(RP l -- S 1, CP l ~ S 2, and H P  1 ~ $4). The sequences are natural in the 
sense that each sequence is contained in its infinite limit, which exists by 
functoriality; in particular, the projective spaces CP "- l  which correspond to 
the physical states of quantum systems with a finite-dimensional Hilbert 
space C n are also natural. Notice that finite spheres (S 2n-~) which are noncon- 
tractible are contained in Hilbert spaces (Cn), while for the infinite sphere 
the opposite occurs: S = is contractible, but C = is not Hilbert. 
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There are natural relationships between these sequences, given by the 
projective twistor bundle (Ward and Wells, 1990) "r: S 2 - CP 3 --~ I--IP I in 
the complex-quaternionic case and the principal bundle S 1 ---> RP 3 --% CP l 
in the real-complex case; in fact, if [z] = zC* with z = (z~, z2, z3, z4) 
C 4. and [~]--- ~R* with ~ = (x~, x2, x3, x4) ~ R  4. are points in CP 3 and 
RP 3, then p[z] = (zl + jz2, z3 + jza)H* and q[x] = (x~ + ix2, x3 + ix4)C* 
are corresponding projections onto HI '  1 and CP I, while the compositions j2 
o Jl and 12 ~ ll are inclusions of the spheres S ~ and S 2 into RP 3 and CP 3, 
respectively; notice that a" is not a principal bundle, since S 2 is not a group; 
however since H P  t = P(HZ), H ~ C 2, and P(C 2) = CP l, then "r is a fiber 
bundle with fiber S 2. 

Using the bijections mentioned in Section 2.2, one obtains the classifica- 
tion of all the principal O(1)-bundles in the real case and principal U(1)- 
bundles in the complex case: 

[Z2, i --- 2 
wt: ~s0(RP i-t) ---> HI(RP/-1; Z2) -~ [0 ,  i = 1 

means that in the real case for each bundle in the sequence (except for the 
first one) one has the additional trivial bundle S O ---> RU -1 • S O ---> RP i-~ 
(two copies of RP/- 1), while 

Z, 1 ~ 2  
cl: ~s l (CP  t-l)  ---> H2(CPt-I; Z) --~ 0, 1 = 1 

means that in the complex case for each bundle in the sequence (except for 
the first one) one has an additional infinite set of  bundles S 1 ---> p2~-i ___> 
CP t-l  with k E Z, k :/: 1 (p2t-l = S2t-l and k = 0, all I correspond to trivial 
bundles). The monopole bundles corresponding to the case l = 2, which with 
proper connections represent Dirac magnetic monopoles of charge k, include 
the Hopf bundle of spheres S l ---> S 3 ---> S 2 for k = 1 (Wu and Yang, 1975), 
which in addition in quantum mechanics represents a general 2-state system 
(in particular the spin-l/2 system), and the bundle S ~ ---> R e  3 - ~  C P  1 for k 
= 2 since p3 ~ SO(3) ~ RP 3. 

Since H / ~  is not an Eilenberg-Mac Lane space, for the principal SU(2)- 
bundles we do not have a classification as that given above for the real and 
complex cases; the long exact homotopy sequence (Steenrod, 1951), however, 
applied to the universal bundle for G = S 3 leads to ~s3(S 4) ~ Z [similarly 
as in the complex case, in which ~s f fS  2) ~- Z], which are the well-known 
instanton bundles of t 'Hooft  and Polyakov; in particular, the Hopf bundle of 
spheres S 3 ---> S 7 ---> S 4 represents the unit of instanton charge (Trautman, 
1977). 
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3. QUANTUM EVOLUTION 

In this section we shall review the relation between the Schrrdinger 
equation for the wave function d/, the Schrrdinger-von Neumann equation 
for the density matrix p (in the present case for a pure state), and the 
Aharonov-Anandan equation for the geometric part of the wave function ~. 
Though these results are well known (Bohm, 1993a), we include them here 
for completeness and to emphasize some deep but natural geometrical aspects 
of quantum mechanics. The results are valid for both finite (Cn) - and infinite 
(~)-dimensional Hilbert spaces; as we saw in Section 2.3, however, the 
infinite-dimensional case does not correspond to the topological limit n 

of the finite cases, since C ~ is not a Hilbert space; the only role of this 
limit is to codify in a single bundle all the information contained in the 
finite-dimensional cases. The geometry of the infinite-dimensional projective 
Hilbert bundle S l __~ S(~) ~ !~(~) and the corresponding universal connec- 
tion will be discussed in the next section. 

A (pure) physical state in quantum mechanics is represented by a ray 
in the Hilbert space V (C n or ~ )  of the system, i.e., by a complex line through 
the origin in this space, and so it consists of a point in the projective space 
~(V). This point has a density matrix representation through the complex- 
linear operator (in Dirac notation) p = Id/) |  (d/I ~ V | V* ~-- Homc(V, 
V), the space of complex-linear maps V ~ V, and where V* is the dual of 
V, Id/) is a normalized ((d/Id/) = 1) state vector to account for the probabilistic 
interpretation, and phase invariance symmetry, i.e., the absence of physical 
consequences of global multiplication of the wave function d /by  elements 
of U(1), is automatically incorporated since the Hermitian inner product in 
V requires that (d/I ~ e-ia(d/I if Id/) --~ e/a I d/); p is normally denoted by 
Id/)(d/I. Also, p2 = p, i.e., p is a projection operator: if I q~) ~ V, then p( I q~)) 
= c ,  lcp) with c,  = (d/Iq~) ~ C; if Iq~) is normalized, then I c~l 2 is the 
probability to find the system described by the state vector I q~) in the state 
Id/), and this probability does not change if It p) is replaced by ei~lq~). Thus 
we have the identifications 

{pure physical states} ~ ~(V) (--' {Id/) |  (d/I, Id/) ~ V, (d/Id/) = 1} 

If H is the Hamiltonian operator, then the normalized state vector I d/) 
satisfies the Schrrdinger equation ih(O/Ot) ld/) = HI d/) and because of the 
hermiticity of H the vector (d/I of the dual space obeys ih(O/Ot)(d/I = -(d/IH.  
Then the density matrix for the pure state satisfies the Schrrdinger-von 
Neumann equation 

ih 0 - -  O = [H,  O] 
~t 
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with [H, p] = Hp - pH. (The density matrix for a mixed state p = Ei 
wil~i)(t~il obeys the same equation, here the wi are probabilities and satisfy 
Ei wi = 1.) A solution p(t) to this equation with a given initial condition 
p(0) is a path in ~(V),  and a corresponding solution O(t) to the SchrSdinger 
equation is a path in the unit sphere S(V) which projects onto p(t): rr(t~(t)) 
= p(t), i.e., ~(t) is a lifting of  p(t). However, since 

{~1~}=(~1 ~1~} = -/h(t~lHl~} 

is in general different from zero, I~) is not a horizontal lifting, which, as we 
saw in Section 2.2, requires a horizontal velocity vector ItS) at each point. 
[ I t~(t)) is an element of the fiber at p(t), and horizontality is defined by the 
canonical or the universal connection.] Since ~ e T~,S(V), then, as it should 
be, Re(t~ld~) = 0, i.e., in the real sense (but not in the complex one) ~ and 
d~ are orthogonal. 

The horizontal lifting of p(t) in S(V) is the Aharonov-Anandan wave 
function defined by 

~J(t):={exP[hIidt'(t~(t')lH(t')l~(t'))]}~(t) 

which obeys the equation ih(O/Ot)~ = Fl(t)~J(t) with /t(t) = H(t) - 
(O(t)lH(t) I O(t)) and the initial condition d)(0) = t~(0); as a consequence, 
(d~(t) I d~(t)) = 0 [also (t~(t) I t~(t)) = 0]. ~J(t) can be considered as the geometri- 
cal part of d~(t) since according to its definition d~ is obtained from t~ by 
multiplying by the inverse of the dynamical phase factor exp(ietdy,), where 

ill OLdy n : - - ~  dt' (~J(t')lH(t')lO(t')) 

So, the time evolution of the Aharonov-Anandan wave function is given by 
the parallel transport determined by the canonical (or universal) connection 
on the Stiefel (or universal) bundle along the solution of the Schrrdinger-von 
Neumann equation in the projective space (Bohm et al., 1993). For a closed 
path in this space the holonomy in S(V) is observable and it gives the 
Berry-Simon-Aharonov-Anandan phase (the geometric phase) which was 
originally discovered by Berry for adiabatic processes. 

Since the Schrt~dinger-von Neumann equation is a dynamical equation, 
we cannot argue that the quantum evolution process has been completely 
understood in geometrical terms. However, recent developments on the 
geometrization of quantum mechanics (Ashtekar and Schilling, 1994; Corichi 
and Ryan, 1995) could in principle be applied to that equation, hopefully 
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leading to a complete geometrical picture. This is the subject of further 
research. 

Also, using the Feynman path integral formulation of quantum mechanics 
in terms of the density matrix, Ajanapon (1987, 1988) showed that the 
classical limit of pure states, which consists in maintaining only the diagonal 
elements of the density matrix and neglecting the off-diagonal ones, is the 
Liouville equation of classical statistical mechanics (the deterministic classi- 
cal limit consisting of Newton or Hamilton equations requires that one start 
out initially from a mixed quantum state). The discussion above relating the 
density matrix operators with the space of physical states suggests that the 
Liouville equation is the correct physical classical limit of pure quantum 
states. It would then be of interest to study this relation between the Schrrd- 
inger-von Neumann equation and the Liouville equation from a bundle- 
theoretic (i.e., geometric) point of view. 

4. P R O J E C T I V E  HILBERT B U N D L E  

In this last section we shall describe in detail the differentiable structure 
of the classifying bundle ~c: S ' --> S(~) ---> ~ ( ~ )  associated with an infinite- 
dimensional Hilbert space, and of its universal connection, responsible for 
the geometric phases. First, for completeness, we shall present some details 
of our proof (Aguilar and Socolovsky, 1996) that already at the topological 
level ~c is a classifying bundle for S l, which in particular gives the explicit 
homotopy equivalence between CP ~ and ~ (~ ) .  The physical importance of 
these results consists in that they provide a natural "bridge" between the 
description of quantum systems with a finite-dimensional Hilbert space and 
that of quantum systems with an infinite-dimensional Hilbert space; clearly 
the rationale for this unity is provided by  the concept of homotopy. 

Let E = limvce Vas in Section 2.3, i.e., E is a real or complex vector space 
given as a limit of its finite-dimensional subspaces (ordered by inclusion); this 
topology is called the finite or inductive topology. Then the following theorem 
holds (Palais, 1966): E is a topological vector space (i.e., the sum of vectors 
and the product of vectors by scalars are continuous functions) if and only 
if E has a countable (algebraic) basis. Real or complex infinite-dimensional 
Hilbert spaces ~ ,  however, have an uncountable basis and so they do not 
have the finite topology, but they are complete inner product linear spaces. 
The norm induced by the inner product, Ilvll := ~ v), makes them metric 
spaces with a translation-invariant distance and therefore they are locally 
convex and completely normal topological vector spaces, which respectively 
means that the topology has a basis consisting of convex sets (the open balls) 
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and that disjoint closed sets can be separated by continuous functions [if A 
and B are disjoint closed sets in the metric space (E, d), then 

d(v, A) 
f(v)  := ~ [0, 11 

d(v, A) + d(v, B) 

satisfiesf(a) = 0 for all a e A andf(b)  = 1 for all b ~ B, with d(v, C) = 
infc~c d(v, c) for any C C E]; in particular, A or B can be replaced by a 
point and therefore Hilbert spaces are completely regular; then they are also 
Hausdorff spaces. 

Notice that the decomposition of the inner product in a complex Hilbert 
space ~ into its real and imaginary parts, (v, w) = Re(v, w) + i lm(v, w), 
makes it possible to consider ~ as a complete real vector space with a bilinear 
symmetric positive-definite inner product given by Re(v, w); the convergence 
of Cauchy sequences is a consequence of the equality of distances dR(v, w) 
= dc(v, w). The imaginary part is a symplectic inner product. 

Any (infinite-dimensional) Hilbert space ~ (Conway, 1990) has a topo- 
logical basis or complete orthonormal system �9 = {e~}~j  with (e~, ea) = 0 
if (x :~ 13 and (e,, e~) = 1 for all or, in terms of  which each vector belonging 
to ~ is given by its Fourier series v = "Z~,~j (v, e~)e, (only a countable 
subset of the indexing set J contributes to the sum). 

If e is countable, then ~ is called separable, otherwise it is nonseparable. 
The canonical separable complex Hilbert space is 

If  el = (1, 0 . . . .  ), e2 = (0, 1, 0 . . . .  )4 �9 "" is the standard topological basis 
then the Fourier series for z is z = E;%~ ziei, and clearly C = ~- 
span({ei}i%l), i.e., the topological basis of 12 is the algebraic basis of C = with 
12 = closure(C~); in particular, this implies that C = is not a closed subset of 
l z. l 2 can be identified with the set of functions 

12(N) := q~: N ---) C, n ~ q~(n) ~ q~. with ~ I q0.12 < 
n = l  

Then if ~ is an arbitrary separable Hilbert space and �9 = {ei}i~=l is a 
topological basis, it can be shown that the continuous function 

~: ~ ~ 12(N), v ~ t~(v): N --~ C, n ~ t~(v)(n) := (v, e.) 

is a Hilbert space isomorphism. In particular, ~ preserves the inner product: 
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if v, w ~ ~ ,  then v = ~ k ~  1 Vke k and w = ~k~ 1 Wke k with vk = (v, ek) and Wk 
= (W, eD, then 

(v, w ) =  ~ vk~  = ~ (v, ek)(W, eD 
k = l  k = l  

oo 

= ~ t~(v)(k)O(w)(k) = (t~(v), ~(w)) in 12(N) 
k=l 

Similarly, for an arbitrary infinite-dimensional Hilbert space ~ with basis G 
one defines the space of functions 

/2(G) := {q~: G ~ C, e,~ ~ qo(e,,) -- qo,~ with ~ Iqoal 2 < ~} 
~ t E J  

and 

~: ~ ---> 12(G), v ~ t~(v): G ---> C, e~ ~ ~(v)(e~) := (v, e,~) 

is again an isomorphism. Since G can be canonically identified with its set 
of indices, this gives the well-known result that all Hilbert spaces with the 
same cardinality are isomorphic to each other; notice that in general the 
isomorphism is not canonical. In the quantum mechanical case, however, if 
H is the Hamiltonian of  the system, then the set of its orthonormalized 
eigenstates G0 = {q0x}x~j is a natural topological basis of  the Hilbert space, 

= closure(span(Go)), and in the particular case that J = N one has the 
canonical isomorphism ~ :  ~ --> 12(N), dd ~ (])(lll): N ----> C, n ~ (t~, q3n). 

By the Stone theorem (Willard, 1970) Hilbert spaces are paracompact 
and therefore admit continuous partitions of unity. The Hilbert sphere 

s ( ~ )  := Iv ~ ~lllvll  = 1} 

being a metric subspace of ~ ,  is completely normal and paracompact, but 
not compact. One has the continuous action S(~)  • S 1 ---> S(~),  (v, z) 
vz, and the projection q: S (~)  ---> S(~)/S t, q(v) = Iv] = {vz}z~s~, onto the 
quotient or orbit space, ~ ( ~ )  := S(~)/S l: the projective Hilbert space; since 
S(~)  and S 1 are Hausdorff spaces and S l is compact, then ~ ( ~ )  is Hausdorff, 
and q is open, since it is the projection associated with an action, and 
because of the compactness of S 1 it is also closed; then ~ ( ~ )  = q(S(~)) 
is paracompact since images of paracompact spaces by closed functions 
are paracompact. 

Let V be a locally convex topological vector space and E a dense vector 
subspace with countable algebraic dimension and equipped with the finite 
topology; let O be an open subset of V and t3 := O fq E. By a theorem of 
Palais (1966) if V is metrizable, then the inclusion 13 _L> O is a homotopy 
equivalence (notice that E is not a topological subspace of V). We apply this 
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result to V = ~ ,  an arbitrary s e p a r a b l e  Hilbert space, E = C =, O = ~ - 
{0}, and 0 -~ ( ~  - {0}) f) C = = C = - {0}; the inc lus ionj  is the restriction 
to C = - {0} of  the inclusion k given by the diagram 

COO i > 12 

i.e., k = ~ - l  o i a n d j  = klc=_101, where qJ: ~ ----> 12(N) is an isomorphism 
which depends on the basis e of  ~ and i(zl  . . . . .  Zr) = (Zl . . . . .  Zr, 0 . . . .  ); 
then C | - {0} .2.> ~ - {0} is a homotopy  equivalence. On the other hand, 
the continuous functions S (~ )  -~  ~ - {0} given by the inclusion and ~ - 
{0} _5_> S ( ~ )  given by r(v) = v/llvll satisfy r o i. = ids<~) and ~ o r ~ i d~ - {o l  

with the homotopy  given by H: ( ~  - {0}) • I ----> ~ - {0}, H(v ,  t) --- (1 
- t)v + tv/llvll [so n(v ,  O) = no(v)  = v, i.e., H0 = id~e-{ol and  H(v ,  1) = 
Hi(v)  = v/llvll, i.e., Hi = L o r]; then L is a homotopy  equivalence and 
therefore S ( ~ )  ~ ~ - {0}. One has the diagram 

c ~ j> ~ - 1 o 1  

s ~ '~ > s ( ~ )  

where et : =  r o j o ~0, being the composi t ion o f  homotopy equivalences 
(the canonical  inclusion ~ois also a horn otopy equivalence), is a homotopy  
equivalence; explicitly, if z ~ S =, then z = (zl . . . . .  zs) with ~I=l Izi Iz = 

1 for some s, and 

ix(z)-' = r o j o t0(~) = r(j(~)) = r(t~-I o i(~)) = r(~-l(Zl,  . .  . ,  Zs, 0, . . . ) )  

= ~ - l ( Z l  . . . . .  Zs, 0 . . . .  ) = ~ Zkek 
k = l  

i.e., ct is an inclusion of  S = into S (~) ;  obviously, ot is an S l-map (S l- -.) 

equivariant), i.e., ct(~z) = c t ( z ) z  for z ~ S I. Therefore S ( ~ )  ~- S ~ --'- { p t . } ,  

i.e., S ( ~ )  is contractible. In Section 4.6 we shall prove that 

~c: S ~ ~ S(~) ~ ~(~)  

is a smooth principal S l-bundle, and therefore a topological S l-bundle. Since 
any principal bundle on a paracompact  space is numerable, then ~c is numera- 
ble and therefore it is a classifying bundle for S i. By universality, C P  ~ 
9~(~). The equivariance of  ct implies that the function ~:  C P  ~ ---> ~(Tf) ,  x 
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~(x) := q ( o t ( y ) ) w i t h  y e "rrct({x})is well defined [i.e., i f y '  is another 
element of  the fiber over x, then q(ot(y ' ) )  = q(ct(y))]; then one has the S l_ 
bundle morphism given by the following diagram: 

S l S 1 

1 1 
s ~ ~ > s ( ~ )  

~c I I q 
c P  ~ > ~ ( ~ )  

The important practical result is that ~ explicitly gives the homotopy 
equivalence between CP ~ and ~ ( ~ ) .  In fact, by a theorem of  Dold (1963), 
if X and X' are respectively free and contractible G-spaces, then (i) there 
exists a G-map 13: X' ---> X, and (ii) any two such maps are G-homotopic 
(i.e., the two maps are homotopic and the homotopy between them is a G- 
map). We apply this result to X' = S(~)  and X = S=; then there exists an 
Sl-map 13: S(~)  ~ S ~. So 13 oet: S ~ ---> S ~ and ct o 13: S(~)  --> S(~)  are S l- 
equivariant, and since the identities ids ~ and ids~)  are S ~-maps, then 13 o ct 

i d : ( S  ~-homotopic) and ct o 13 -- i d ~ ) ( S  1-homotopic), i.e., 13 is the homotopy 
inverse of ct. This result passes to the quotients and ~: ~ ( ~ )  ----> CP ~ is 
the homotopy inverse of ~. Therefore ~([(zl, z2 . . . .  )]) = [E zee,] is a 
homotopy equivalence. 

If in the above constructions ~ = l 2, then t~ = idl 2, j = i, I coo_ Iol -- Jo and 

o~(z~ . . . . .  Z r )  = (Z~ . . . . .  Z . . . .  ) - -  a0(Zt, � 9  Zr) 

The corresponding diagrams are 

C ~ -  {0} jo> l z _  {0} 

S ~ ao > S(12) 

and 

S l S 1 

1 1 
S ~ o.o > S( l  2) 

C p ~  ,~o > ~ ( l  2) 

In the following we shall discuss the differentiable structure of the 
classifying bundle ~c and the universal connection on it. For simplicity we 
shall restrict ourselves to separable Hilbert spaces, and in particular to the 
case ~ = /2(N). 
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4.1. S (~ )  as an Inf ini te-Dimensional  Real  Banach  Manifold (Choquet- 
Bruhat et al., 1982; Abraham et al., 1988) 

Let f: ~ --> R be given byf (x)  := IIxll 2, then S ( ~ )  = f - l ( {  1 }). We shall 
prove that 1 ~ R is a regular value of f. The derivative of f at x in the 
direction v (both x and v are in ~ )  is defined by Df(x)(v)  = limt_>o(f(x + 
tv) - f (x ) ) / t  and an easy calculation gives Df(x)(v)  = (x, v) + (x, v); in 
particular, Df(x)(x)  = 2 4 : 0  for any x ~ S(~),  which shows that Df(x)  is 
surjective at these points since Dr(x): Tx~ = ~ --> R is (real) linear for any 
x E ~ .  Let us now verify that at each x E S(~),  ker(Df(x))  has a complement, 
i.e., there exists a closed real Banach subspace Wx of ~ such that ker(Df(x))  
GR ~ = ~ .  In fact, for x = el = (1, 0 . . . .  ), Df(eO(v)  = zl + "zl, where v 
= (zl, z2 . . . .  ), so ker(Df(eO) = {v = (ih, z2 . . . .  ), h ~ R} and then Wel = 
{p, 0 . . . .  ), p ~ R} ~ R; notice that ~/'el is the orthogonal complement of 
ker(Df(eO) with respect to the real inner product in ~ ,  since Re((p, 0 . . . .  ), 
(ih, z2 . . . .  )) = g e ( - i h p )  = 0 for x =# el; ker(Df(x))  = {v ~ ~lRe(x ,  v) = 
0} and W~ = {w ~ ~ lRe(w,  v) = 0 for all v ~ ker(Df(x))} ,  which is closed 
since the short exact sequence 

Df(x) 
0 ---> ker(Df(x))  ---> ~ > R --> 0 

implies ~ -- ker(Df(x))  (~R R and so Wx ~ R (the isomorphisms are not 
canonical). From the implicit function theorem, S(~)  is a closed, regular, 
real, infinite-dimensional Banach submanifold of ~ .  In particular, the tangent 
and normal spaces at x E S(~)  are given by T~S(~) = ker(Df(x))  and N x = 
W~, respectively. 

4.2. The Canonical  Decompos i t i on  o f  Te~S(~) 
The tangent space to the Hilbert sphere S(~)  at et canonically decom- 

poses into the direct sum TelS(~) = Hel ~)I~ Vel, where 

H e ' : = {  (O'z2,z3 . . . .  ) ' z i  ~ C' ~ lzi'2 < 

is the horizontal space at el, and Ve~ = {ih, 0 . . . .  ), h ~ R} is the vertical 
space, isomorphic to t~, the Lie algebra of S ~. Notice that both He~ and 
Vel are real vector spaces. After Section 4.6, He1 will be the universal connec- 
tion at el. 

4.3. The Hi lber t  Sphere  as a H o m o g e n e o u s  Space 

We shall prove that the Hilbert sphere is diffeomorphic, as a Banach 
manifold, to the homogeneous space ~(~)/~ where ~ is the unitary 
group of ~ and ~(~)e~ is the isotropy subgroup at el. 
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Let E be a normed vector space and F a Banach space; then the set of 
linear continuous (bounded) functions (operators) from E to F, ~(E,  F), is 
a Banach space with the operator norm topology: if A ~ ~s F), then 

IIAII-- sup IIa(x)ll 
x ~  E, II~I= 1 

A Banach algebra ~ is a Banach space equipped with an associative product 
s~ • sa ~ ~ ,  (a, b) ~ ab, having the usual distributive properties with 
respect to vector addition and such that (ka)(l~b) = (kp,)(ab) and Ilabll -< 
Ilall" Ilbll, where k, p, ~ K and a, b e ~ .  For example, if E is a Banach space, 
then ~(E, E) ------- ~(E) with the product given by the composition of operators 
is a Banach algebra with unit ide. If  E is real (complex) then ~s is a real 
(complex) algebra. There is the following theorem: The set ~ *  of invertible 
elements in a Banach algebra ~ with unit l a  is a Banach Lie group, that 
is, ~ *  is a group and a Banach manifold with compatible algebraic and 
differentiable structures, i.e., the group operations (product and inverse) are 
smooth. (The idea of the proof is that ~ *  is an open set in ~ ,  and so it 
inherits the differentiable structure.) In the example, ~E(E)* -- GL(E) is the 
general linear group of E. In particular, for a Hilbert space, ~s D GL(~) 
is a Banach Lie group. Clearly Lie(GL(~)) = TtdGL(~) = ~ ( ~ ) ,  which is 
a real (complex) Banach Lie algebra with [a, [3] = a[3 - [3a if ~ is a real 
(complex) Hilbert space. 

For each operator A in ~ ( ~ )  there exists a unique operator A* called 
the adjoint of A which satisfies (Ax, y) = (x, A 'y )  for all x, y E ~ ;  this is 
a consequence of the canonical isomorphism between ~ and its dual space 
~ ' .  (In the physical literature the usual notation for A* is A*.) The function 
*: ~ ( ~ )  ---> ~ ( ~ ) ,  A ~ A*, is continuous and real linear [but not complex 
linear, since (hA)* = ~4"].  The sets of operators ~s := {A ~ ~(~)IA* 
= A} (self-adjoint or Hermitian) and ~a (~ )  := {A ~ ~(~)IA* = -A} 
(skew- or anti-Hermitian) are real Banach closed subspaces of ~ ( ~ ) ,  and 
~(~) ..~ ~s(~) (~R ~a(~), A ~ �89 + A*) ( ~ R I ( A  - -  A*) is an isomorphism. 

The unitary group of ~ is the subgroup of GL(~O given by 

~ := {A E GL(~)I(A(x), A(y)) = (x, y) for all x, y ~ ~ }  

so A ~ ~ if and only if A*A = AA* = idx, i.e., A - l  = A*. One has 
the following: 

Theorem. ~ is a closed, regular, real Banach submanifold of GL(~). 

Corollary. ~ is a closed, real Banach Lie subgroup of GL(~). In 
particular, ~ is a real Banach Lie group. 

Proof of the Theorem. Let f: GL(~) ~ ~s(~)  be given byf(A) := A'A; 
then f -~(ld)  = ~ ( ~ ) .  GL(~) is open in ~s and f is the restriction to 
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GL(~)  of the smooth function f: ~s ---> ~s := f (A),  so f i s  smooth. 
Its derivative at A in the direction T ~ ~s is 

Df(A)(T) = lim(f(A + tT) - f ( A ) ) l t  = A*T + T*A 
t---->O 

so ker(Df(A)) = {T ~ ~ (~ ) IA*T  = - T ' A }  and in particular ker(Df(Id)) 
= {T ~ ~ (~ ) I T*  = - T }  = ~a(~) ,  which splits in ~ ( ~ ) ;  also Df(ld): ~g(~) 
___> ~ s (~ )  is onto since for B ~ ~s(~) ,  Df(Id)(�89 = �89 + �89 = B. Then Id 
E ~ s ( ~ )  is a regular value off ,  and by the implicit function theorem, ~ ( ~ )  is 
a closed, regular, real Banach submanifold of GL(~),  with TA~(~) = 
ker(Df(A)) and in particular Tla~(~) = ~a(~) ,  which are real Banach 
spaces. QED 

The restriction of the action GL(H) • S(~),  (T, x) ~ T(x), to ~ ( ~ )  is 
the smooth action a: ~ • S(~)  ---> S(~),  a(T, x) = T(x). For a fixed x0 
E S(~),  ~x induces the smooth function 0%: ~ ---> S(~) ,  T ~ c%(T) = 
T(xo) [Otxo(~(~)) is the orbit of x0 under ~ ( ~ ) ]  and one has the isotropy 
subgroup at x0, ~(~)xo = {T ~ ~ = Xo} = ~x~o~({x0}); clearly, 
~ is a closed subgroup of  ~ ( ~ ) .  In the following, and without loss of 
generality, we shall take Xo = e~. 

It is easy to verify that o~ei is surjective or, in other words, that the action 
c~ is transitive: in fact, let h = ze~ ~ S(~)  (this implies Izl = 1); if T 
~ ( ~ )  is given by T(v) = zv, one has IIT(v)II = Ilzvl -- Ilvll and then T ~ ~ ( ~ ) ,  
i.e., T ~ o~({h}) ;  now consider again h ~ S(~),  but h and e~ linearly 
independent; then e~ and h span a 2-dimensional complex closed subspace 
V of ~ ,  and applying twice the Gram-Schmidt  orthonormalization process, 
we obtain the pair of orthonormal bases of  V, {e~,/~} and {~, h}, with 

= (h - (h, eOeOl]lh - (h, e0edl, ~l = (e~ - (e~, h)h)4[e~ - (e~, h)hl[ 

Then the operator A: V --~ V defined as the complex linear extension of A(e0 
= h and A(/~) = ~ is unitary and one can verify that A ~ idv• V ~ V • ---> 
V ~ V • is linear, bounded, and unitary on ~ = V ~ V • so A (t) idv• 
ae,~({h}). Then S(~)  is a homogeneous space and one has the commuta- 
tive diagram 

�9 ( ~ )  ~" > s ( ~ )  

\ f 
~ ( ~ ) / ~ ( ~ ) e ,  

where p is the projection p(T) = IT] = T~ and ~el is the bijection 
~e,([T]) = T'(eO with T'  ~ [T]. In order to be able to apply Theorem A 
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(see Appendix),  we have to verify that 0~(~)e  I is a regular Banach Lie 
subgroup of  ~ ( ~ ) ;  f rom the implicit  function theorem, that is a consequence 
of  el being a regular value of  Crew. It is sufficient to show that 

Dctel(Id): T td~(~ ,  ) = ~ a ( ~ )  _.__) TetS(~ ) 

= {v e ~ ,  v = (Zl, Z2 . . . .  ), Zl imaginary} 

T ~ DOtel(Id)(T) = Otel(T) = T(el) 

is surject ive and has a split  kernel  ker (Dae l ( ld ) )  = { T E ~ a ( ~ ) l T ( e l )  = 0}, 
which is closed in ~ a ( ~ ) .  

L e t  v --- (Zl, z2 . . . .  ) be a fixed vector  in ~ ;  then, it is easy to show that 
the maps  Iv: ~ --> ~s fv: ~ --> C, and Lv: ~ --> C, respectively,  g iven by 
Iv(h) = hlv, fv(h) = zl hi, and Lv(h) = (h, v) are complex  linear and bounded 
(continuous);  then Tv = lv + u o (f~ - Lv): ~ --~ ~ with t: C ~ ~ ,  t(z) : =  
zel is linear and continuous and gives Tv(h) = htv + (hl'zl -- (h, v))el; in 
particular, Tv(eO = v and Tv(ei) = - 'ziel  for  i > 1, so (Tv(et), er) = (v, er) 
= z,, r < 1, and (Tv(ei), er) = - z i ( e l ,  er) ( =  --Zi for r = 1 and = 0 for  r 
> 1) for i > 1. Then it is easy to verify that i f  v ~ Te~S(~),  the adjoint 
operator  T* defined by (T*(x) ,  y) = (x, T~(y)) satisfies ((Tv + T*)(ei) ,  er) 
= 0 for all i, r >- 1, and since { ei, i = 1, 2 . . . .  } is a comple te  or thonormal  
set, T* = -T~, i.e., Tv ~ ~ a ( ~ )  and so Dctel(Id) is surjective. 

Define the function go: Tea S ( ~ )  ~ Ttd~t(~) ,  v ~ ~p(V) :=  Tv; then q~ is 
a right inverse of  Dot~z(Id) since 

DCt~l(Id) o q~ = idTelS(~ ) 

and is real linear and injective, so q~ is an excis ion of  the short exact  sequence 

0 ~ ker(Detel(Id))  _3.> TtdOR(~) o,~,,(t~ TelS(~)  ~ 0 

which therefore splits, i.e., one has the i somorphism o f  topological  vector  
spaces 

~: ker(Dctel(Id)) ~) T~j S ( ~ )  ~ Ttd~ ~ ( T  G v) 

= u(T) + q~(v) = T + Tv 

Notice, however,  that Im(q~) is not the topological  complemen t  o f  
ker(Det~l(Id)) in ~ a ( ~ ) ,  since lm(q~) fq ker(Detel(Id))  = {0} :/: ~b. Consider  
a sequence Tv, in lm(~p) which converges  to T in ~a(7s as n --> ~;  to prove 
that Im(q~) is closed in ~ ( ~ )  amounts  to showing that T = Tv for  some v 

Te~S(~). Since T~ ~ T, then T~ n is a Cauchy sequence and therefore for 
any fixed h ~ ~ ,  

IIT~,(h) - Tv~(h)lt -- II(Tv~ - Tv~)(h)ll--< IITv~ - T J I "  Uhll < 
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for n, m --> No; then T~,(h) is a Cauchy sequence in ~ and by completeness 
Tv~(h) ---> h; in particular for h = el, T~,(eO = v, ---> -h --- v ~ TeIS(~). Using 
the result that if Tv, ---> T then Tv~(h) ---> T(h) for any h ~ ~ ,  if v = (zl, z2, 
. . . )  and v~ = (zn l, z~ 2 . . . .  ), we have 

T(ei) = lim T~,,(e i) = - l i m  ~jel  = -~ je l  for j -- 2 
n rt 

T(el) = lim Tvn(et) = lim vn = v, T~(ej) = -~ je l  for j - 2 
Yl n 

and Tv(el) = v, so T = Tv ~ Im(tp). From the implicit function theorem one 
also has Tla~ = Lie(~ = ker(Dotel([d)). 

We now apply Theorem A (see Appendix) with the identifications G = 
�9 (~ ) ,  H = ~(~)~ l ,  h = ker(Dotel(Id)), and l = lm(tp): There is a unique 
differentiable structure on ~ ( ~ ) / ~ ( ~ ) e t  such that the projection p: ~ ( ~ )  
---> 0 ~ ( ~ ) / 0 ~ ( ~ ) e  I is a submersion. With this structure, the canonical action 
~ • ~  l --> ~ 1 7 6  I is smooth and 

Op(ld)Jlm(~): [m(cp) ---> T[IdI(~176 

is an isomorphism of topological vector spaces. 
To prove that ~e~ is a diffeomorphism of Banach manifolds we use some 

properties of  submersions (Abraham et al., 1988; Aguilar, 1996). Let M, N, 
and Q be Banach manifolds, j~ M --> N a surjective submersion, and g: M 
---> Q and ~: N ----> Q functions such that ~ o f = g. Then g is smooth if and 
only if g is smooth. (This is a consequence of the fact that a surjective 
submersion has smooth local sections.) Then ~ e l  is smooth: in fact, identify 
M = ~ ( ~ ) ,  N = ~ 1 7 6  Q = S(~) ,  f = p, g = Otel , and ~ = ~el"  

The proof that ~ m  is smooth is based on the inverse function theorem, 
which is valid for Banach manifolds and says that if the differential of  a 
smooth bijective functiony5 M ---> Nis  a topological vector space isomorphism 
at all points of  its domain, then f is a diffeomorphism, i.e., f - a  is smooth. 
The derivative of~e~ ~  = Ore I a t / d  ~ ~ ( ~ )  is represented by the commuta- 
tive diagram 

TldO~(~) D~(Id) 
> Te f l (~)  

D p ( l ~  ~ e , ( [ I d ] )  

Z[id](O~(~)/O~(C~)el) 

When restricted to Im(tp), Dp(ld) becomes a topological vector space 
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isomorphism by Theorem A, and the analogous thing happens to Dote~(ld) 
since it is a left inverse of q0, which is injective, so 

D-~el([Id] ) = DOtet(ld)llm(~ ) o Dp(Id)llml(,p) 

is a topological vector space isomorphism. Fix now a unitary operator A and 
consider the commutative diagram 

0"~,(~) Otet) S (~)  

(~-el 

where the left translation La and A are diffeomorphisms given by La(T) = 
A o T and A(v) = A(v), respectively. Passing to the quotients, we obtain 

0~(~) P ) 0~(~)]0~(~)el ~e,) S(~)  

LA 1 -LA l I"A 
~ ( ~ )  p > ~ ( ~ ) / ~ ( ~ ) e ~  ~e, > S(~)  

where LA([T]) = [A o T]. Since LA o p = p o La is smooth and p is a 
submersion, then La is smooth with smooth inverse L2 ~ = LA*; then we can 
take differentials and obtain 

TtfR(~,)DP(- p(t~ Z[id](O~(~,)/O~(~,)el) D'~e,([IdD TelS(~ ) 

_ > T A ~ , o S ( ~ )  TA~ ~Dp(A) T[A](~176 Da,,([a]) 

The right part of the diagram shows that D-~el([A]) is a composition of 

topological vector space isomorphisms and therefore is a topological vector 
space isomorphism. Then ~el is a diffeomorphism and so ~176 and 
S(~) are diffeomorphic as Banach manifolds. The differentiable structure on 
~(~)l~ determined by Theorem A is nothing but the diffeomorphic 
translation o f  the differentiable structure on S(~)  as a submanifold of  ~ by ----I OLel �9 
4.4. The Canonical Decomposition of TAr 

The canonical decomposition was defined in Section 4.2 at et e S(~)  
as the subspace/-/~, of TetS(~). Through the isomorphism D~e~([Id]) we push 
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it forward to the class of the identity in the homogeneous manifold 
~(~)/~ 
H[tdl := D-~el([Id])-l(Hel) = Dp(Id)llm(r o Dotel(Id)l~l(,)(Het) 

= Op(ld)l lm(~) ({Tv ~ , ~a (~ ) IV  = (0, Z2 . . . .  ) ~ ~q~}) : =  Op( ld ) l tm( , ) (n ld )  

Thus there is a canonical topological vector space isomorphism between 
the horizontal space at lid] and the Banach subspace Hid of the skew-Hermitian 
operators [i.e., of  Tld~ consisting of the operators Tv with zero first 
component of v. For the vertical space at the same point we have 

Vttd ] = Dp(Id)ltm(,p)({Tv ~ ~a(~) lv  = (iX, 0 . . . .  ), h ~ R}) 

with Ttldl(~(~)l~ = Httd I OR Vital], and defining Vtd = {Tv e ~a(~) lv  
= (ik, 0 . . . .  ), k E R}, we arrive at Ttd~ (~ )  = H t d  ~)R Vtd. 

To obtain the decomposition at all points we consider the left part of 
the last diagram. There DLA(Id) is a topological vector space isomorphism, 
and since ~ C G L ( ~ )  C ~ ( ~ ) ,  then DLA(Id) = LA and so DLa(Id)(T) 
= LA(T) = A o T. Then the horizontal and the vertical spaces at A e ~ ( ~ )  
are respectively given by HA = {A o Tvlv = (0, z2 . . . .  ) ~ ~}  and VA = {A 
o Tvlv = (iX, 0 . . . .  ) ~ ~}  with HA ~) VA = TA~ 

The remarkable point is that we can "see"  the universal connection 
(after Section 4.6) on the projective Hilbert bundle at the tangent spaces o f  
the unitary group o f  the Hilbert space. To "see" the connection at the tangent 
space of the homogeneous manifold ~176 we use the fact that the 
restriction Dp(A)l of Dp(A) to the image of lm(q~) in Tid~ by DLA(Id) 
[i.e., to A o Im(q0)] can be shown to be a topological vector space isomorphism. 
Then we have the horizontal and vertical spaces Hta ] = Dp(A)I(HA) and VIAl 
= Dp(A)I(VA), satisfying HIA ] ~)R VIA] = T[al(~176 We can return 
to the Hilbert sphere and have the connection and vertical space at a point 
A(el) given by HA(e l  ) = D-~el([A])(n[A]) and VA(el) = D-~el([A])(V[Al), with 
Ha(el) ~ R  Va(e 1) = TA(el)S(~,) �9 

A final remark concerns the fact that the decomposition is well defined. 
Let A and B be two different elements in ~ ( ~ )  but belonging to the same 
class in ~176 i.e., [A] = [B]. Obviously HA and Ha are different, 
and the same holds for VA and Vs. However, they are two distinct representa- 
tions on the tangent bundle of ~ of the same decomposition, since, as 
can be easily shown, Dp(A) o DLA(Id) = Dp(B) o DLB(Id) and then Dp(A)I(HA) 
= Dp(B)I(Hs); the analogous result holds for the vertical spaces. 

4.5. ~ ( ~ )  as a Homogeneous Space of Banach Lie Groups 

There are two topologically equivalent definitions of the projective 
Hilbert space. The first definition consists of  the complex one-dimensional 
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subspaces of ~ (lines through the origin in ~ )  and is given by f f ( ~ )  := 
~* /C*  = {[v]' = vC*, v ~ ~*} ,  where ~ *  = ~ - {0} and C* = C - 
{0}, while the second definition (already given at the beginning of this 
section) consists of the orbit space of the action S(~)  X S ~ ~ S(~),  (v, w) 

vw, @(~,) = S (~ ) /S  1 = {[v] = vS 1, v e S(~)}. Using the projections p: 
S ( ~ )  ~ ~ ( ~ ) ,  p(v) = Iv]', and q: S(~)  ~ 9~(~), q(v) = Iv], we have that 
f f ( ~ )  and ~ ( ~ )  are given the quotient topology, so p and q are identifications 
and q is open and closed. [A continuous function f: X ~ Y is an identification 
if, whenever f - l (V)  is open in X, then V is open in Y An identification has 
the following property: given 13: Y ~ Z such that 13 o f = o~: X ~ Z is 
continuous, then 13 is continuous.] Then it is easy to verify that t~: ~ ( ~ )  --4 
~(~), ~(vC*) = v / l l v l l S  ~ is a homeomorphism: in fact @ is a bijection which 
satisfies t~ o p = q, and if V is open in ~ ( ~ ) ,  then q - l ( V )  = p - l ( ~ - l ( V ) )  
is open in S(~)  and so t~-l(V) is open in f f (~ ) ,  i.e., + is continuous; 
analogously one proves that ~-~ is continuous. Then p is open and closed. 
These results are summarized in the following commuting diagram: 

s(~) 

~(~) ~ > ~(~) 

The action or: ~ X S(~)  ---) S(~)  passes to the quotient and one 
has the commutative diagram 

~t (~)  • S(~)  ~ > S(~)  

id • q~ lq 
~(~) x ~,(~) - - ~  ~,(~) 

with 13(A, [v]) = [Av]. Here 13 is continuous, since id X q is an identification. 
The isotropy group of [e~] e @(~)  is the subgroup of ~ ( ~ )  given by 

~ d = {A ~ ~ = [e~]} = {A e ~ = we~, w ~ S ~} 

C ~(~)[e~]" AS was the case for S(~),  one has the commuta- Clearly 0~(~/[~)e 1 
tive diagram 

\ Z, 
O~(~)/OR(~)te a 
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where ar is the projection ~ (T)  = [T] = T~R(~)te~l, ~[efl(T) = IS(T, [el]), 
and ~te~l is the continuous bijection ~tetl([T]) = [3[ed(T') with T '  ~ [T]. It 
is easy to verify that the following diagram commutes:  

�9 ( ~ )  '~"'> S ( ~ )  

~ ( ~ )  

Since (y..el and q are open, then ~[e~l is open; so ~[e~l is open: in fact, if  
V = ~( ' r r - l (g) )  is open in ~(~)P't t(~le~l),  then [3i~l(U) = ~Le~I(~-I(V)) is 
open in ~ ( ~ ) .  So 13te~] is a homeomorphism. 

Define the function ~/: ~ ( ~ ) e t  X S ~ ~ ~(~)[e~], (T, W) ~ ~/(T, W): ~ 
--> ~ ,  ~(T, w)(e0  = wel, and ~/(T, w)(ei) = Tei, i > 1 [it is easy to verify 
that (web Tez . . . .  ) is orthonormal,  then ~/(T, w) is linear and continuous]; ~ 
is a bijection with an inverse given by ~/-l: ~(~)~e~l ~ ~(~)[e~l X S 1, ~-I(A) 
= (TA, W), where w is determined by Ae~ = we~ and TAe~ = e~ and Taei = 
Aei [again (ei, Ae2 . . . .  ) is orthonormal].  Also, ~/is a group homomorphism 
(isomorphism). We have the following result. 

Proposition. The function (group homomorphism)  ~: S ~ --* ~ ( ~ ) ,  u(w) 
:=  ~(Id, w): ~ --> ~ ,  u(w)(e0 = we~, ~(w)(ei) = e,., i > 1, is an embedding 
from S ~ --~ ~ ( ~ ) ,  i.e., S ~ is a regular Banach Lie subgroup of  ~ ( ~ ) .  

Proof. Clearly U is injective. Let  f:  C --> ~ ( ~ ) ,  f ( z )  = hz �9 id: {el) �9 
( e0  • = ~ ~ ~ be given by hz(eO = z e ~ ; f i s  an extension of  u sincefls~ 
= ,. and from the commutat ive diagram 

C 

S l 

i 

> ~ ( ~ )  
L 

where the inclusions i and j are regular embeddings,  u is smooth since i o u 
= f o j  is smooth. The derivative o f f ,  Df(z): C ~ ~ ( ~ ) ,  in the direction of  
v ~ C a t h  = z ' e l O y  E ~ i s g i v e n b y  

Df(z)(v)(h) = lim -1 ( f (z  + tv) - f ( z ) ) ( z ' e l  G y) 
t~o t 

= lim 1 ((z + tv)z'el G y - (zz'el �9 y)) = vz'el 
t-,o t 
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independent  o f  z; if Df(z)(v)  = 0, then Df(z)(v)(ej)  = vel = 0, i.e., v = 0, 
and so Df(z)  is injective at each z; taking differentials in the last diagram, 
one obtains the derivative o f  ~, Dr(w): TwS ~ ~ T ~ ) ~ ( ~ ) ,  which is injective 
at each w e S I. To prove  that D~(w)(TwS ~) is a split subspace o f  T~(w)~ 
at each w e S t, it is enough to prove that at w = 1 

D~(1)(TI SI) = {D~(1)(ih), h ~ R} C Ttd~ = ~ ( ~ , )  

with 

D~.(1)(ih) = Px: ~ ~ ~ ,  px(z'el �9 y) = ihz 'el  

[in particular, px(e0 = ihe t and p• = 0, k > 1]; notice that p• = hpl 
and so Dt(1)(TIS 1) = (Pl), which is closed in ~ a ( ~ ) ;  according to Theorem 
A in the Appendix,  its (closed) complemen t  (when it exists) with respect  to 
~ a ( ~ )  is the kernel o f  a l inear continuous operator  P: ~s ~ ~ a ( ~ )  
satisfying P o P = P and such that the set o f  its f ixed points is DL(I)(T1SI). 
Let  P(A) :=  q~(A)pl, where lp(A) = lli(Ael, et) ~ R [since A E ~ a ( ~ ) ,  (Av, 
v) is pure imaginary for any v ~ ~ ] ;  in particular, q0(p0 = 1/i(plel, eO = 
lli(ie~, e~) = 1. One has: qD is linear and continuous (it is the composi t ion  
of  the evaluation and the inner product);  

p2(A) = P(q~(A)p0 = lp(A)tp(p0p~ = q~(A)p~ = P(A)  

Let  Px e (Pl); then P(Px) = P ( h p 0  = h P ( p 0  = hpl,  i.e., Px is a f ixed vector  
of  P; i f A  e ~s is a f ixed vector  of  P, then P(A) = q~(A)pl = A, i.e., A 
E (Pl), so [f ixed vectors of  P} = DL(1)(TISI). Then (Pl) is a split subspace 
o f ~ a ( ~ ) ,  i.e., ~ a ( ~ )  = Dt(1)(T1S l) �9 ker(P) with ker(P) = {A e ~ " ( ~ ) l ( A e l ,  
el) = 0}. Finally, L is closed since S 1 is compac t  and ~ ( ~ )  is Hausdorff .  
Then  L is an embedding.  Q E D  

Define the function i-~ :=  I~ o (i X 0,  where p~ is the composi t ion  
in ~ ( ~ ) :  

~  I X S 1 i-L ) 0 ~ ( ~ )  

/c 
~(~)  x ~(~)  

It is easy to verify that i-L(T, w) = ~/(T, w), so i.L is a bijection onto its 
image,  i. t (~(~)e~ X S I) = ~(~)[e~l.  We have the fol lowing result. 

Proposition. i . t  is an embedding  f rom 0 ~ ( ~ ) e  I X S I to ~ ( ~ ) ,  i.e., 
~ t X S I (or ~ (~) [e t l )  is a regular submanifold  of  ~ ( ~ ) .  
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Proof .  0"~(~)e  I and L(S 1) are regular Banach  Lie subgroups of  ~ ( ~ ) ,  and 
they commute  with each other, i.e., t(w) o T = T o ~(w) for  all w m S 1 and 
T ~ ~ I [in fact, T o ~(w)(eO = T (weO = wTel  = we1, t (w)  o T(eO = 
~(w)(et) = wel ,  and, for k > 1, T o ~(w)(ek) = Te~ and t(w) o T(ek) = Tek, 

since (el, Tek) = (Tel,  Tek) = (el, ek) = 0 and then Te~ = ~)Z2 %jej, which 
is invariant under ~(w)]; so i.L is a smooth m o n o m o r p h i s m  since 

i" t ,(T l o T2 ' WlW2 ) 

= Ix ~ (i • 0(T1 o T2 ' WIW2 ) 

= i(Tl o ?'2) o ~(wlw2) = (Tl o T2) o (L(w0 o L(w2)) 

= (Tt  o ~(wl)) o (Tz o I(w2)) = i" L(TI, WI) o i" L(T2, w2) 

and if i" ~(T, w) = Id,  then T o t (w) (eO = WTel = we l  = el and for  k > 1, 
T o  L(w)(ek) = Tek = ek, so (T, w) = (Id, 1). We compute  now the differential 
o f / -  ~: D ( ~  o (i • O) = DIX o (Di  • DO; again it is enough to study that function 
at the identity. We use the result that the differential of  the composi t ion in 
a Banach Lie group G, ix: G • G ---) G is g iven by Dix (g l ,  g2)(vl, v2) = gl 
o v2 + Vl o g2; in particular, Dix(Id,  l d ) ( v w 2 )  = vl + v2. Consider  the d iagram 

Tta~ X TIS  ~ Oi(ld) x O~(I) TldO]l.(r X T J t t ( ~ )  

D(i.O(Id, 1) 
Dp,(/d, 1) 

Tng~ 

= { T  E ~ a ( ~ ) l T e l  = and recall that T1a~t(~)  = , ~ a ( ~ )  and Ttd~ 
0}. Then 

D ( i .  u)(ld, 1)(T, iX) 

= DIX(Id, 1 ) (Di ( ld ) (T) ,  D~(1)(iM) = DIX(Id, 1)(T, Px) 

= T + Px: ~ ~ ~ ,  z ' e l  ~ y ~ T ( z ' e l  G y )  + px(z'el G y) 

= Ty + i k z ' e l  

In particular, (T + px)(e0 = ihe l  and ( T  + p• = Tek for  k > 1; if  T + 
Px = 0, then h = 0 and T = 0, i.e., k e r ( D ( i .  L)(Id, 1)) = {(0, 0)} and therefore 
D ( i .  L)(Id, 1) is in ject ive .  To prove that its image  splits, we use Proposit ion 
B in the Appendix,  and identify V = ~ a ( ~ ) ,  H = Tta~(~)e~ ,  H '  = {Tv 
~a(~/l~)lv = (Zl,  Z2 . . . .  ), Zl imaginary},  K = D t ( 1 ) ( T I S  l) = {Px, h ~ R}, and 
K '  = {A ~ ~ " ( ~ ) l ( A e l ,  el) = 0}, which obey  the required conditions, in 
particular H C K '  (trivial), for K C H ' :  Px = T/xe~ [in fact, f rom Tvel = v 
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and Trek = --'~ek for k > 1, where v = (zl, zz . . . .  ) we have T/• I = ihel 
and Tixeler = 0], and if Px ~ H, then p• = 0 and so h = 0, i.e., px = 0. Then 

f:~a(~) = (TldO'ls ~ DL(1)(TISI)) ~ H '  fq K '  

where the complement H '  fq K '  is given by 

{T  v ~ ~ a ( ~ ) l v  = (ik, Z2 . . . .  )} fq {A e ~ a ( ~ ) l ( A e l ,  e l )  = 0} 

: { T v  ~ ~ a ( ~ ) l v  = (0,  Z2, Z3 . . . .  )} 

which is nothing but the canonical decomposition at the identity of ~ 
Now H '  fq K '  is closed since H '  71 K'  = ker(Pn~x) (see Appendix). By 
translations, i 'L is an injective immersion. Finally, let us prove that i.,. is 
closed: if Cl is closed in O'~(~[~)e I and C2 is closed (and then compact) in S l, 
then Cl is closed in ~ ( ~ )  since ~ is closed in ~ and t(C2) is closed 
and compact in ~ Then using the result that ifA and B are closed subsets 
of a topological group G and B is compact, then AB is closed, we have that 
i. t = Ix o (i • L) is closed. One has the homeomorphism 

i~.: ~ l X SI---> 0"tt(~)ted, i~(T, w) = i" t(T, w) QED 

Corollary. By Theorem A (see Appendix), ~(~)/~ has a unique 
differentiable structure such that "rr: ~ ---> ~  1 is a submersion. 

H '  K '  T[taq~ ~)]~ (~)  [e ~ l is Moreover, the restriction D'rr( Id) l n,~K, : N ---> 
an isomorphism of topological vector spaces. 

Remark. Through [3[etl the differentiable structure on 0~t(~)/0R(~)te~l 
passes to ~ ( ~ ) ;  in particular, 

- o n '  K' T[e l l~(~)  D[Atefl(Id)ln, nK, = D~te~l([Id] ) D'rr(ld) I trnx,: n --> 

is a topological vector space isomorphism. From 13ted --- q ~ ~e I we have 

DfAtell(Id) = Dq(el) o Da,~(ld): ~a(~)  __.> Tte~]~(~), T ~ Dq(el)(TeO 

and therefore D~ied(Id)(Tv) = Dq(eO(v). 

4.6. ~c as a S m o o t h  Principal  Bundle  

We shall prove that the projective Hilbert bundle ~c: S l --> S(~) --% 
~ ( ~ )  is a smooth principal Sl-bundle. We shall use the following facts: S(~) 
and ~ ( ~ )  are homogeneous spaces of the Banach Lie group ~ ( ~ )  and 
therefore ~c is diffeomorphic to the bundle 

S' ~ ~ ~ ~ 
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with ~ given by the composition 

S(~)  q ) ~ ( ~ )  

_ > ~ (~ ) /g t (~ ) t e  d 

i.e., ~ = ~ 1  o q o ~e~ (see Sections 4.3 and 4.5); a surjective submersion 
has local sections and its consequence (see Section 4.3); the smooth functions 
p and ~ defined, respectively, in Sections 4.3 and 4.5 and satisfying Ne~ ~ P 
= ae~ and ~tel~ ~ ~ = ~te~l are surjective submersions. For simplicity of 
notation we shall write ~ ( ~ )  -- G, ~(~)rel l  -- H, and ~(~)~l  - K; if T �9 
%L(~), then TK -- [T]K and TH =-- [T]H. Then ~([T]K) = [T]H and for any 
[T]H there is a diffeomorphism ~-l({[Tbt})  ---> HIK. We have: 

(i) The commutative diagram 

G 

G/K > GIH 

implies that ~ is smooth. 
(ii) G --~ G/H has smooth local sections; then for any [T]n �9 G/H there 

is an open neighborhood U C GIH and a smooth funct ion h: U ---> G satisfying 
~r o h = idu. 

(iii) The inclusion t: H ---> G induces the commutative diagram 

H ~> G 

Pr I ~P 
H/K _ > G/K 

L 

p o u is smooth and the projection pr  is a surjective submersion; therefore 
is smooth, where ~(TK) = [T]K. 

(iv) The product in G induces the commutative diagram 

G x G  ~> G 

id~• l I p 
G • G/K ,_> G/K tL 



Space of States in Quantum Mechanics 915 

where ~(T ' ,  [T]K) = [T'T]x  is the induced action. Since p o Ix is smooth 
and ida • p is a surjective submersion, then ~ is smooth. 

(v) From (ii)-(iv) the composition ~ := ~ o (k • [) given by the diagram 

GIK 

/ \ 

U x tIIK > G •  GIK 
X x g  

is smooth. One has 

~([T]n,  T'K) = ~ o (k • ~)([TIn, T'K) 

= ~(k([TIH), [TIK) = [k([Tln)T'IK 

(vi) Defining 

q~: U • H/K ~ ~-~(U), 

q~ is smooth, the diagram 

U • H/K 

q~([TIH, T ' K )  := Cp([Tln, T ' K )  

> ~-qu) 

commutes, and 

~b: ~ - I (U)  ----> U • H/K, 

/ 

U 

~([T]K) := ([T]~, X([TJH)-~[T]K) 

is a smooth inverse of q~. Now, ~ is smooth since its first coordinate is ~ and 
the second coordinate ~2 is given by the composition ~ o (inv o h o -~, v), 
where inv is the inverse in G and v: ~-l(U) ~ G/K is the inclusion, i.e., 
one has the commutative diagram 

GIK 

o/ 
q - l ( U )  (inv o k o ~, p~ G • G / K  
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is a right inverse of q0 since 

q0 o t~([T]r) = q0([T]n, h ( [ T ] n ) - l [ T ] r )  

= ~([T]n, [h([T]H)- IT]r)  = [X([T]rl)X([T]n)-IT]K = [T]r  

similarly one proves that ~ is a left inverse of  q~. 
(vii) From Section 4.5, H / K i s  diffeomorphic to S 1. Then the diffeomorph- 

ism {q~: U • S l ---~ O-l(U)} corresponding to an open cover {U} of  G / H  is 
a set of local trivializations of ~c- QED 

4.7. The Universal  Connection and Its Complex St ructure  

In Section 4.4 we obtained the canonical decomposition of the tangent 
spaces to the unitary group of the Hilbert space ~ = 12(N), TA~ = HA 
@R VA, with horizontal and vertical subspaces, respectively, given by HA = 
{A o Tv lv  = (0, z2 . . . .  ) e ~}  and V a = {A o Tv lv  = (iX, 0 . . . .  ) ~ ~ } ,  
where ~ a ( ~ )  ~ Tv: ~ ~ ~ is given by Tv(h) = h lv  + ( h l ~  - (h, v))el (see 
Section 4.3); notice that XTv = Txv for X E R. (In particular, at the identity, 
T1d~ = Ilia ~)R Vtd with Hid = {Tv lv  = (0, Z2 . . . .  ) ~ ~}  and Vtd = 
{T~I v = (iX, 0 . . . .  ) ~ ~}.)  Since ~c is a smooth principal SI-bundle with 
horizontal spaces given by the inner product in ~ and the subspaces HA are 
obtained from them by D-~e~, then the family {HA} is smooth. It can be easily 
shown that if one defines the left action L: S ~ X ~ ( ~ )  ---) ~ by L(to, B) 
:= L~(o,)(B), then HL~(o,)m = DL~(o,)(A)(HA), i.e., the family {HA} is left S l- 
equivariant. (To have fight Sl-equivariance--according to Section 2 .2 - -one  
should take the elements of the homogeneous spaces G / H  as [ g] = H g  instead 
of [g] = gH,  throughout this paper.) Therefore the subspaces {HA} define a 
connection. The connection is universal since its restriction to each odd- 
dimensional sphere coincides with the Narasimhan-Ramanan connection, 
and it is responsible for the geometric phase in the infinite-dimensional case. 

Finally, we prove that at each A E ~ ( ~ ) ,  HA has a complex  struc- 
ture: define 

Ja: HA----~ HA, A o T~ ~ JA(A o T~) := A o T,~ 

Then 

JA(A o Tv~ + A o Tv2) = JA(A o (T~ + T~2) ) = JA(A o Tv~ +~2) 

= A o T,-~,+~2) = A o Tiv l+iv2  = A ~ (Tiara + Ti~2) 

= A 0 Tivl + A ~ Tiv2 

= J(A o Tvl) + J (A  o Tv2) ' JA(h A o Tv) 

= JA(A o hT~) = JA(A o Txv) = A o Tix~ = A o Tx~u 

= A o h T i =  hA o T,.~ = LIA(A o Tv) 
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i.e., JA is R-linear and 

j 2 ( A  o Tv) = JA(A ~ Tiv) = A o T~(i~) = A o T_~ = - A  o Tv 

i.e., J2A = - i d ,  A. With the complex structure, HA becomes a complex vector 
space with product by complex numbers given by z(A o TO = A o Tz~, i.e., 
i(A o TO = JA(A ~ Tv). It is clear that the complex structure carded by the 
universal connection is canonical. This reinforces the statement made at the 
beginning of this work, that quantum mechanics makes use of complex 
numbers in an essential way, since it is precisely the universal connection 
that drives the time evolution of the geometrical part of the wave function. 

The isomorphism of topological vector spaces given by the restriction to 
HA of the differential of'rr: ~ ( ~ )  --~ 0R(~)/~(~)tet I at A, i.e., D'rr(A)l,,: HA --) 
TtAl(OR(~.)/~ allows us to translate the complex structure from the tan- 
gent spaces to ~ to the tangent spaces to ~ ( ~ ) ,  namely 

J[A]: T[A](O~(~)]O~(~)[el]) "-> T[A](O~(~)[O~(~)Iel]) 

J[al(t[al) := DTr(A)IHA(Ja(DTr(A)I~t~(ttA]))) 

APPENDIX 

Definition. An equivalence relation -- on a smooth manifold M is called 
regular if the quotient space MI-- carries a differentiable structure such that 
the projection p: M ~ M I ~  is a submersion. If ~ is a regular equivalence 
relation, then M I ~  is called the quotient manifold. 

Proposition. Let -- be a regular equivalence relation on M. Then: 
(i) Any smooth map g: M ---> N compatible with --, i.e., x~ ~ x2 implies 

g(xO = g(x2), defines a unique smooth map g: M / ~  --> N such that g o p = g. 
(ii) The manifold structure on MI-- is unique (up to diffeomorphism). 

Definition. Let ~ be an equivalence relation on M. The set F ( - )  = 
{(Xl, x2) ~ M • M l x l  -- x2} is called the graph of ~ .  

Theorem (Godement) (Abraham et al., 1988). An equivalence relation 
-- on a smooth manifold M is regular if and only if: 

(i) F ( - )  is a regular submanifold of  M • M. 
(~i) Pl: F ( ~ )  --~ M, where pl(Xl, X2) = X l is a submersion. 

Theorem A. Let G be a Banach Lie group, and H C G a subgroup which 
is a regular submanifold of G. Then the action G • H --~ G defines a regular 
equivalence relation on G. Hence G/H has a unique smooth manifold structure 
such that p: G --~ G/H is a submersion. Moreover, if L C TgG is a closed 
complement of ker Dp(g),  then Dp(g)lL: L --~ Tfg1G/H is an isomorphism. 
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Proof. In this case the equivalence relation on G is given by gl - g2 if 
and only if there exists h ~ H such that g~h = g2. Define "y: G • H ---> G 
• G by ~(g, h) = (g, gh). Clearly Image ~ /=  F ( - ) .  Now, "y is smooth since 
it is a projection on the first coordinate and the composition of an inclusion 
and the product in G: G x G ---> G • G ---> G on the second. Assume ~/(gl, 
hi) = "Y(g2, h2); then (gl, glhO = (g2, g2h2), so that gl = g2 and hi = h2. 
Therefore ~/is injective. 

One can easily show that the differential of ~/at (e, e) ~ G X H, D~(e, 
e): TeG • Tell ---> TeG X T~G is given by/>y(e,  e)(v, w) = (v, v + w), where 
Tell C TeG, which is clearly a monomorphism. Now we will show that the 
image of D~(e, e) is a split subspace of  T~G X TeG. Let f :  TeG X TeG ---> 
TeG be given by f (vl ,  v2) = v2 - vl, which is continuous since TeG is a 
topological vector space. Since H is a regular submanifold of G, Tell is a 
closed split subspace of T~G; therefore f-I(T~G - Tell) is open, but f - l (TeG 
- T~H) = (T~G X TeG) - Image D~(e, e), hence Image D~(e, e) is closed. 
Let P' E L(TeG) be the projection operator for the split subspace Tell. Define 
P: TeG • TeG ---) TeG • TeG by P(vl, v2) = (vl, vl + P'(v2 - vO). Since P'  
is continuous and linear and P '  o P'  = P' ,  one can show that P is continuous 
and linear and P o P = P. We also have that Image D'y(e, e) = {(vl, v2)lP(vl, 
v2) = (vl, v2)}. Therefore T~G • T~G = Image D~l(e, e) ~ ker P, hence "y 
is an immersion at (e, e). To show that ~/ is an immersion at any point (g, 
h) E G x H, consider the following commutative diagram: 

G •  ~'> G •  

LgXRh I ~Ls• (Rh~ 
GXH > GXG ,y 

Since Lg and Rh are diffeomorphisms, taking differentials, we can show 
that D~(g, h) is a monomorphism whose image is a split subspace. 

Let t~: G X G ---> G X G be given by ~(gl, g2) = (gl, g?lg2). This map 
is clearly smooth, and in particular its restriction to ~/(G / H)  C G x G is 
continuous. Since H C G has the subspace topology, t~l~(axm: "y(G X H)  ---> 
G • H is continuous. Since this map is the inverse of  % then ~/is a topological 
embedding, i.e., ~/ is a homeomorphism onto its image. Therefore ~/ is a 
regular embedding and then F ( - )  is a regular submanifold of G / G. 

Now we shall show that p~: G X G ---> G restricted to ~/(G X H)  is a 
submersion. Consider 

T~G / T~H Dy(e, :) TeG X TeG 

,~Dpl(e, e) 
TeG 
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Let v ~ TeG; then (v, v) = D~(e, e)(v, 0) and Dpl(e, e)(v, v) = v, so 
O p l ( e ,  e)llmage Dv(e,e) is surjective. Its kernel is the subspace {0} X Tell. Since 
TeG is Hausdorff,  the diagonal  subspace A = {(v, v)lv E TeG} is closed and 
we clearly have that A n { 0 } x Te H = { 0 } and A ~) { 0 } / Te H = Image  
D~l(e, e). To see that p|llmag e .~ is a submersion at any other  point (g, gh) 
E Image  ",/, we consider  the fol lowing commuta t ive  d iagram and take the 
differential o f  each map:  

G X H  

I 

L~ X Rh 

G •  

) G• r,) G 

> G• > G �9 y p~ 

Therefore  by Godemen t ' s  theorem G/H has a unique smooth  structure such 
that p: G ---) GIH is a submersion.  To prove the second statement of  the 
theorem, let q0: V ---) W be a surjective, continuous, l inear map  between 
Banach spaces. I f  L is a closed subspace of  V such that L �9 ker  q0 = V, then 
q~lL: L --) W is an i somorphism.  To verify this, take l ~ L such that qo(/) = 
0; then l ~ L O ker q~ = {0}, so l = 0; now, since q0 is surjective, given w 
E W, there exists v ~ V such that q0(v) = w, but v = l + a, where a E ker  
q0; therefore q0(v) = q~(/) = w, so qolm is surjective. Since q~lm is a continuous 
linear isomorphism,  by Banach ' s  i somorphism theorem, q~lL is a 
homeomorphism.  

The  result now fol lows f rom the fact that for  each g ~ G, Dp(g): TgG 
TIg]GIH is surjective and its kernel splits. Q E D  

Proposition B. Let  V be a Banach space and H and K closed split 
subspaces with dim K < oo and such that H n K = {0}. I f  H ~) H '  = V, K 
~) K '  = V, H C K ' ,  and K C H ' ,  then H �9 K is a closed split subspace of  
V a n d V =  ( H @ K )  O ( H '  O K ' ) .  

Proof. (i) F rom Abraham et aL (1988) if  H and K are closed and dim 
K < 0% then H �9 K is closed. 

(ii) There exist l inear continuous operators  Pn, Pr: V ---) V satisfying 

PH 2 = PH 

P2r = PK 

V = {fixed vectors o f  PH} �9 ker PH = {fixed vectors o f  PK} �9 ker PK 

Then if v ~ V, v = h ~) h '  with Pn(v) = h and v = k �9 k'  with PK(v) = 
k. Defining PH@K: V ---) V, PH@K :=  PH ~) Ptc, we have: 
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(a) PH@X o PH@x(V) = PHex(Pn(v) (~ Px(v)) = PH~K(Pn(v)) G 
PH@K(Px(v)) = P~(v) • Px(Pt4(v)) 0 Pn(PK(v)) G p2(v) = PH(V) G PK(v) 
= (PH 0 PK)(v) since Px(h) = PH(k) = 0 because h ~ H C K '  and k ~ K 
C H ' .  

(b) Let v ~ H �9 K; then PHex(v) = Pttex(h �9 k) = PH(h) �9 Px(h) 
= h �9 k, i.e., H G K C {fixed vectors o f  PHeK}; let v ~ V a n d  PH@K(v) = 
Pn(v) G PK(v) = v, since Pn(v) = h and Px(v) = k; then v = h G k, i.e., 
{fixed vectors o f  PHeX} C H G K, and therefore {fixed vectors o f  PH@K} 
= H O K. Then V = (H @ K) G ker(Pn~x) with ker(PH~x) = {v E VIh E) 
k=o}.  

(iii) L e t v  E H'  n K ' , i . e . , v  = 0 O h '  = 0 G k ' ; t h e n h G k =  0 
since h = k = 0, i.e., H '  Cl K '  C ker(PH@K); let h = - k ;  then h = k = 0 
since H f'l K = {0} and so v = h '  = k' ,  i.e., ker(PH.K) C H '  f3 K ' .  Then 
ker(Pne~) = H '  f'l K ' .  QED 
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